Advertisements
Advertisements
प्रश्न
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
उत्तर
LHS = sin( 90° - θ ) sin θ cot θ
= cos θ . sin θ . `cos θ/sin θ`
= cos2θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
sin(45° + θ) – cos(45° – θ) is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0