Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
उत्तर
LHS = `tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ)`
= `(sin^2θ/cos^2θ)/(sin^2θ/cos^2θ - 1) + (1/sin^2θ)/(1/(cos^2θ) - 1/sin^2θ)`
= `sin^2θ/(sin^2θ - cos^2θ) + (1/sin^2θ)/((sin^2θ - cos^2θ)/(cos^2θ sin^2θ))`
= `sin^2θ/(sin^2θ - cos^2θ) + cos^2θ/(sin^2θ - cos^2θ)`
= `(sin^2θ + cos^2θ)/(sin^2θ - cos^2θ) = 1/(sin^2θ - cos^2θ)` (∵`sin^2θ + cos^2θ = 1`)
Notes
θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If 3 sin θ = 4 cos θ, then sec θ = ?
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`