Advertisements
Advertisements
प्रश्न
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
उत्तर
LHS = 1+`(tan^2 theta)/((1+ sec theta))`
=` 1+ ((sec^2 theta-1))/((sec theta + 1))`
=`1+((sec theta +1)(sec theta-1))/((sec theta +1))`
=`1+ (sec theta-1)`
=`sec theta`
= RHS
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.