Advertisements
Advertisements
प्रश्न
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
उत्तर
LHS = `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ)`
= `(sin θ(1 - 2sin^2 θ))/(cos θ(2 cos^2 θ - 1))`
= `(tan θ(1 - 2(1 - cos^2 θ)))/(2 cos^2θ - 1 )`
= `(tan θ(1 - 2 + 2 cos^2 θ))/(2 cos^2θ - 1 )`
= `(tan θ(2 cos^2 θ - 1))/(2 cos^2θ - 1 )`
= tan θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]