Advertisements
Advertisements
प्रश्न
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
उत्तर
LHS = `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ)`
= `(sin θ(1 - 2sin^2 θ))/(cos θ(2 cos^2 θ - 1))`
= `(tan θ(1 - 2(1 - cos^2 θ)))/(2 cos^2θ - 1 )`
= `(tan θ(1 - 2 + 2 cos^2 θ))/(2 cos^2θ - 1 )`
= `(tan θ(2 cos^2 θ - 1))/(2 cos^2θ - 1 )`
= tan θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.