Advertisements
Advertisements
Question
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Solution
LHS = `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ)`
= `(sin θ(1 - 2sin^2 θ))/(cos θ(2 cos^2 θ - 1))`
= `(tan θ(1 - 2(1 - cos^2 θ)))/(2 cos^2θ - 1 )`
= `(tan θ(1 - 2 + 2 cos^2 θ))/(2 cos^2θ - 1 )`
= `(tan θ(2 cos^2 θ - 1))/(2 cos^2θ - 1 )`
= tan θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Without using trigonometric identity , show that :
`sin42^circ sec48^circ + cos42^circ cosec48^circ = 2`
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1