Advertisements
Advertisements
Question
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Solution
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A [[ cos A" sin A " ],[-sin A" cos A"]]`
= ` [[sin^2A " - sin A cos A"],[sinA .cos A - sin^2 A ]]+ [[cos^2 A " cos A . sin A"],[ -sinA cos A cos^2 A]]`
` =[[sin^2 A + cos^2 A " - sin A. cos A + cos A . sin A "],[sin A . cos A - sin A . cos A " sin^2 A + cos^2 A]] = [[ 1 0 ] , [ 0 1]]`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that: `1/(sec θ - tan θ) = sec θ + tan θ`.
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.