English

Prove the Following Trigonometric Identities. Sqrt((1 - Cos A)/(1 + Cos A)) = Cosec a - Cot a - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`

Solution

We need to prove  `sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`

Here, rationaliaing the L.H.S, we get

`sqrt((1 - cos A)/(1 +  cos A)) = sqrt((1 - cos A)/(1 +cos A)) xx sqrt((1 - cos A)/(1 - cos A))`

`= sqrt((1 - cos A)^2/(1 - cos^2 A))`

Further using the property, `sin^2 theta + cos^2 theta = 1` we get

So,

`sqrt((1 - cos A)^2/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A`

`= (1 - cos A)/sin A`

`= 1/sin A - cos A/sin A`

= cosec A - cot A

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 38 | Page 44

RELATED QUESTIONS

 Evaluate sin25° cos65° + cos25° sin65°


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If `sec theta = x ,"write the value of tan"  theta`.


From the figure find the value of sinθ.


What is the value of (1 − cos2 θ) cosec2 θ? 


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×