Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Solution
We need to prove `sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Here, rationaliaing the L.H.S, we get
`sqrt((1 - cos A)/(1 + cos A)) = sqrt((1 - cos A)/(1 +cos A)) xx sqrt((1 - cos A)/(1 - cos A))`
`= sqrt((1 - cos A)^2/(1 - cos^2 A))`
Further using the property, `sin^2 theta + cos^2 theta = 1` we get
So,
`sqrt((1 - cos A)^2/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A`
`= (1 - cos A)/sin A`
`= 1/sin A - cos A/sin A`
= cosec A - cot A
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `sec theta = x ,"write the value of tan" theta`.
From the figure find the value of sinθ.
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cot2 θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`