Advertisements
Advertisements
Question
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Solution
`sin((A + B)/2) = cos"C/2`
We know that for a triangle ΔABC
`<A + <B + <C = 180^circ`
`(<B + <A)/2 = 90^circ - (<C)/2`
`sin((A+B)/2) = sin(90^circ - C/2)`
= `cos(C/2)`
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
` tan^2 theta - 1/( cos^2 theta )=-1`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`