English

If tan θ = 724, then to find value of cos θ complete the activity given below. Activity: sec2θ = 1 + □ ......[Fundamental tri. identity] sec2θ = 1 + □2 sec2θ = 1 + □576 sec2θ = □576 sec θ = □ cos θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`

Fill in the Blanks
Sum

Solution

sec2θ = 1 + tan2θ    ......[Fundamental tri. identity]

∴ sec2θ = 1 + `(7/24)^2`

∴ sec2θ = 1 + `49/576`

∴ sec2θ =`(576 + 49)/576`

∴ sec2θ = `625/576`

∴ sec θ = `25/24`

∴ cos θ = `24/25`     .......`[cos theta = 1/sectheta]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (A)

RELATED QUESTIONS

Prove the following trigonometric identities.

`sin theta/(1 - cos theta) =  cosec theta + cot theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×