Advertisements
Advertisements
Question
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Solution
We have ` ( sec theta + tan theta ) =m ....(i)`
Again ,` ( sec theta - tan theta ) = n .....(ii)`
Now, multiplying (i) and (ii), we get:
`(sec theta + tan theta ) xx ( sec theta - tan theta ) = mn`
` => sec^2 theta - tan^2 theta = mn `
`= > 1= mn [∵ sec^2 theta - tan^2 theta = 1 ]`
∴ mn = 1
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
If tan θ = `x/y`, then cos θ is equal to ______.
(1 – cos2 A) is equal to ______.