English

If `(X/A Sin a - Y/B Cos Theta) = 1 and (X/A Cos Theta + Y/B Sin Theta ) =1, " Prove that "(X^2/A^2 + Y^2/B^2 ) =2` - Mathematics

Advertisements
Advertisements

Question

If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`

Solution

We have `(x/a sin theta - y/a cos theta ) =1`

Squaring both side, we have:

`(x/a sin theta - y/b cos theta )^2 = (1)^2`

⇒ `(x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - 2 x/a xx y/b sin theta cos theta ) = 1    .....(i)`

Again , `(x/a cos theta + y/b sin theta ) =1`

๐‘†๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘กโ„Ž ๐‘ ๐‘–๐‘‘๐‘’, ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก:

`(x/a cos theta + y/b sin theta )^2 = (1)^2`

`⇒ (x^2/a^2 cos^2 theta + y^2 /b^2 sin ^2 theta + 2 x/a xx y/b sin theta cos theta ) =     ....(ii)`

Now, adding (i) and (ii), we get:

`(x^2/a^2 sin^2 theta + y^2 /b^2 cos^2 theta -2 x/a xx y/b sin theta cos theta ) + (x^2/a^2 cos^2 theta + y^2 / b^2 sin^2 theta + 2 x/a xx y/b sin theta cos theta)`

 ⇒`x^2/a^2 sin^2 theta  + y^2/b^2 cos^2 theta + x^2 /a^2 cos^2 theta + y^2/b^2 sin^2 theta =2`

 ⇒`(x^2/a^2 sin^2 theta  + x^2/a^2 cos^2 theta)+(y^2/b^2 cos^2 theta + y^2/b^2 sin ^2 theta ) =2`

 ⇒`x^2/a^2 (sin^2 theta + cos^2 theta ) + y^2/b^2 (cos^2 theta + sin^2 theta ) =2`

 ⇒`x^2/a^2 + y^2 /b^2 =2     [โˆต sin^2 theta + cos^2 theta =1]`

∴`x^2/a^2 + y^2/b^2 = 2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 3

RELATED QUESTIONS

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


If x = a tan θ and y = b sec θ then


Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×