Advertisements
Advertisements
Question
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Solution
We have `(x/a sin theta - y/a cos theta ) =1`
Squaring both side, we have:
`(x/a sin theta - y/b cos theta )^2 = (1)^2`
⇒ `(x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - 2 x/a xx y/b sin theta cos theta ) = 1 .....(i)`
Again , `(x/a cos theta + y/b sin theta ) =1`
๐๐๐ข๐๐๐๐๐ ๐๐๐กโ ๐ ๐๐๐, ๐ค๐ ๐๐๐ก:
`(x/a cos theta + y/b sin theta )^2 = (1)^2`
`⇒ (x^2/a^2 cos^2 theta + y^2 /b^2 sin ^2 theta + 2 x/a xx y/b sin theta cos theta ) = ....(ii)`
Now, adding (i) and (ii), we get:
`(x^2/a^2 sin^2 theta + y^2 /b^2 cos^2 theta -2 x/a xx y/b sin theta cos theta ) + (x^2/a^2 cos^2 theta + y^2 / b^2 sin^2 theta + 2 x/a xx y/b sin theta cos theta)`
⇒`x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta + x^2 /a^2 cos^2 theta + y^2/b^2 sin^2 theta =2`
⇒`(x^2/a^2 sin^2 theta + x^2/a^2 cos^2 theta)+(y^2/b^2 cos^2 theta + y^2/b^2 sin ^2 theta ) =2`
⇒`x^2/a^2 (sin^2 theta + cos^2 theta ) + y^2/b^2 (cos^2 theta + sin^2 theta ) =2`
⇒`x^2/a^2 + y^2 /b^2 =2 [โต sin^2 theta + cos^2 theta =1]`
∴`x^2/a^2 + y^2/b^2 = 2`
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
If x = a tan θ and y = b sec θ then