Advertisements
Advertisements
Question
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Solution
LHS = `(1 + cot^2 θ/(1 + cosec θ))`
= `(1 + cosec θ + cosec^2 θ - 1)/(1 + cosec θ)`
= `(cosec θ(1 + cosec θ))/(1 + cosec θ)`
= cosec θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
cos4 A − sin4 A is equal to ______.
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Choose the correct alternative:
Which is not correct formula?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.