Advertisements
Advertisements
प्रश्न
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
उत्तर
LHS = `(1 + cot^2 θ/(1 + cosec θ))`
= `(1 + cosec θ + cosec^2 θ - 1)/(1 + cosec θ)`
= `(cosec θ(1 + cosec θ))/(1 + cosec θ)`
= cosec θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.