मराठी

If S E C θ + T a N θ = X Then T a N θ = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 

पर्याय

  • \[\frac{x^2 + 1}{x}\]

  • \[\frac{x^2 - 1}{x}\]

  • \[\frac{x^2 + 1}{2x}\]

  • \[\frac{x^2 - 1}{2x}\] 

MCQ

उत्तर

Given: 

`sec θ+tanθ=x` 

We know that,

`sec^2 θ-tan^2 θ=1`

⇒` (sec θ+tan θ)(sec θ-tanθ)=1` 

⇒`x(sec θ-tan θ)=1`

⇒ `secθ-tan θ=1/x` 

Now, 

`secθ+tan θ=x,` 

`sec θ-tan θ=1/x`

Subtracting the second equation from the first equation, we get 

`(secθ+tan θ)-(secθ-tanθ)=x-1/x` 

⇒` secθ+tanθ-secθ+tanθ=(x^2-1)/x`  

⇒ `2 tanθ=(x^2-1)/x` 

⇒ `2 tan θ=(x^2-1)/(2x)` 

⇒ `tan θ=(x^2-1)/(2x)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 2 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


` tan^2 theta - 1/( cos^2 theta )=-1`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.


Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×