Advertisements
Advertisements
प्रश्न
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
पर्याय
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x^2 + 1}{2x}\]
\[\frac{x^2 - 1}{2x}\]
उत्तर
Given:
`sec θ+tanθ=x`
We know that,
`sec^2 θ-tan^2 θ=1`
⇒` (sec θ+tan θ)(sec θ-tanθ)=1`
⇒`x(sec θ-tan θ)=1`
⇒ `secθ-tan θ=1/x`
Now,
`secθ+tan θ=x,`
`sec θ-tan θ=1/x`
Subtracting the second equation from the first equation, we get
`(secθ+tan θ)-(secθ-tanθ)=x-1/x`
⇒` secθ+tanθ-secθ+tanθ=(x^2-1)/x`
⇒ `2 tanθ=(x^2-1)/x`
⇒ `2 tan θ=(x^2-1)/(2x)`
⇒ `tan θ=(x^2-1)/(2x)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
` tan^2 theta - 1/( cos^2 theta )=-1`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.