मराठी

Prove the Following Trigonometric Identities. (Cosec θ − Sec θ) (Cot θ − Tan θ) = (Cosec θ + Sec θ) ( Sec θ Cosec θ − 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

उत्तर

We have to prove

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)

Consider the LHS.

`(cosec θ − sec θ) (cot θ − tan θ) = (1/sin theta - 1/cos theta)(cos theta/sin theta - sin theta/cos theta)`

`= ((cos theta - sin theta)/(sin theta cos theta))((cos^2 theta - sin^2 theta)/(sin theta cos theta))`

`= (cos theta - sin theta)/(sin theta cos theta) ((cos theta + sin theta)(cos theta - sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

Now, consider the RHS.

`(cosec θ + sec θ) ( sec θ cosec θ − 2) = (1/sin theta + 1/cos theta) (1/cos theta 1/sin theta - 2)`

`= ((cos theta + sin theta)/(sin theta cos theta))((1- 2sin theta cos theta)/(sin theta cos theta))`

`= ((cos theta + sin theta))/(sin theta cos theta) ((cos^2 theta + sin^2 theta - 2 cos theta sin theta))/(sin theta cos theta)`

`= ((cos theta + sin theta)(cos theta - sin theta)^2)/(sin^2 theta cos^2 theta)`

∴ LHS = RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 61 | पृष्ठ ४६

संबंधित प्रश्‍न

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Write the value of tan10° tan 20° tan 70° tan 80° .


Write the value of cosec2 (90° − θ) − tan2 θ. 


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


Prove that sin4A – cos4A = 1 – 2cos2A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×