Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
उत्तर
We have to prove `(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
We know that, `sin^2 theta + cos^2 theta = 1`
`(1 + sec theta)/sec theta = (1 + 1/cos theta)/(1/cos theta)`
`= ((cos theta + 1)/cos theta)/(1/cos theta)`
`= (1 + cos theta)/1`
Multiplying the numerator and denominator by `(1 - cos theta)` we have
`(1 + sec theta)/sec theta = ((1 + cos theta)(1 - cos theta))/(1- cos theta)`
`= (1 - cos^2 theta)/(1- cos theta)`
`= sin^2 theta/(1 - cos theta)`
संबंधित प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
If 1 – cos2θ = `1/4`, then θ = ?
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1