Advertisements
Advertisements
प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
उत्तर
`cos^2 26^@ + cos 64^@ sin 26^@ + tan 36^@/cot 54^@`
`= cos^2 26^@ + cos(90^@ - 26^@) sin 26^@ + tan 36^@/(cot(90^@ - 36^@))`
`= cos^2 26^@ + sin 26^@.sin26^@ + tan36^@/tan36^@` `[∵ cos(90^@ - theta) = sin theta, cot(90^@ - theta) = tan theta]`
`= cos^2 26^@ + sin^2 26^@ + 1`
`= 1 + 1 [∵ cos^2 theta + sin^2 theta = 1]`
= 2
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1