Advertisements
Advertisements
प्रश्न
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
उत्तर
L.H.S. = tan 10° tan 15° tan 75° tan 80°
= tan 10° tan 15° tan (90° - 15°) tan (90° - 10°)
= = tan 10° tan 15° cot 15° cot 10°
= `1/cot 10° xx 1/cot 15° xx cot 15° xx cot 10°`
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
cosec4θ − cosec2θ = cot4θ + cot2θ
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Write the value of tan1° tan 2° ........ tan 89° .
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =