Advertisements
Advertisements
प्रश्न
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
पर्याय
−1
1
0
None of these
उत्तर
Given:
`sin θ+sin^2θ=1`
`⇒ 1-sin^2θ= sin θ`
Now,
`cos^2θ+cos^4θ`
`= cos^2 θ+cos^2θcos^2θ`
=` cos^2θ+(1-sin^2θ)(1-sin^2θ)`
`=cos^2θ+sinθ sinθ`
`=cos^2 θ+sin^2θ`
`=1`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Write the value of tan10° tan 20° tan 70° tan 80° .
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ