मराठी

Prove the Following Identity : Cos 3 a + Sin 3 a Cos a + Sin a + Cos 3 a − Sin 3 a Cos a − Sin a = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`

बेरीज

उत्तर

LHS = `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`

= `((cos^3A + sin^3A)(cosA - sinA) + (cos^3A - sin^3A)(cosA + sinA))/(cos^2A - sin^2A)`

= `(cos^4A - cos^3AsinA + sin^3AcosA - sin^4A + cos^4A + cos^3AsinA - sin^3AcosA = sin^4A)/(cos^2A - sin^2A)`

= `(2(cos^4A - sin^4A))/(cos^2A - sin^2A) = (2(cos^2A + sin^2A)(cos^2A - sin^2A))/((cos^2A - sin^2A)) = 2(cos^2A + sin^2A)`

= `2(∵ cos^2A + sin^2A = 1)`

 OR

= `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`

= `((cosA + sinA)(cos^2A + sin^2A - cosAsinA))/((cosA + sinA)) + ((cosA - sinA)(cos^2A + sin^2A + cosAsinA))/((cosA - sinA))`   (∵ a3 ± b3 = (a ± b)(a2 + b2 ± ab))

= `(cos^2A + sin^2A - cosAsinA) + (cos^2A + sin^2A + cosAsinA)`

= `1 - cosAsinA + 1 + cosAsinA `   (∵ `cos^2A + sin^2A = 1`)

 = 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 21 Trigonometric Identities
Exercise 21.1 | Q 5.07
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×