Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
उत्तर
LHS = `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`
= `((cos^3A + sin^3A)(cosA - sinA) + (cos^3A - sin^3A)(cosA + sinA))/(cos^2A - sin^2A)`
= `(cos^4A - cos^3AsinA + sin^3AcosA - sin^4A + cos^4A + cos^3AsinA - sin^3AcosA = sin^4A)/(cos^2A - sin^2A)`
= `(2(cos^4A - sin^4A))/(cos^2A - sin^2A) = (2(cos^2A + sin^2A)(cos^2A - sin^2A))/((cos^2A - sin^2A)) = 2(cos^2A + sin^2A)`
= `2(∵ cos^2A + sin^2A = 1)`
OR
= `(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA)`
= `((cosA + sinA)(cos^2A + sin^2A - cosAsinA))/((cosA + sinA)) + ((cosA - sinA)(cos^2A + sin^2A + cosAsinA))/((cosA - sinA))` (∵ a3 ± b3 = (a ± b)(a2 + b2 ± ab))
= `(cos^2A + sin^2A - cosAsinA) + (cos^2A + sin^2A + cosAsinA)`
= `1 - cosAsinA + 1 + cosAsinA ` (∵ `cos^2A + sin^2A = 1`)
= 2
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If `sec theta = x ,"write the value of tan" theta`.
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ