Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
उत्तर
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2`
= `(sinθ/cosθ + 1/cosθ)^2 + (sinθ/cosθ - 1/cosθ)^2`
= `((sinθ + 1)/cosθ)^2 + ((sinθ - 1)/cosθ)^2`
= `(sinθ + 1)^2/(cos^2θ) + (sinθ - 1)^2/cos^2θ`
= `((sinθ + 1)^2 + (sinθ - 1)^2)/cos^2A`
= `(sin^2θ + 1 + 2sinθ + sin^2θ + 1 - 2sinθ)/(1 - sin^2θ)`
= `(2(1 + sin^2θ))/(1 - sin^2θ)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1