Advertisements
Advertisements
प्रश्न
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
उत्तर
LHS = `1 - (cos^2 θ)/(1 + sin θ)`
= `1 - (1 - sin^2 θ)/(1 + sin θ)`
= `1 - ((1 - sin θ)(1 + sin θ))/(1 + sin θ)`
= 1 - ( 1 - sin θ )
= 1 - 1 + sin θ
= sin θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Define an identity.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?