Advertisements
Advertisements
प्रश्न
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
उत्तर
LHS = sin 2A
Putting A = 30° in LHS and RHS., we get
LHS = sin 2 x 30° = sin 60° = `sqrt3/2`
RHS = `(2 xx tan 30°)/(1 + tan^2 30°) = (2 xx 1/sqrt3)/( 1 + (1/sqrt3)^2)`
= `(2/sqrt3)/(1 + 1/3). (2/sqrt3)/(4/3)`
= `(2 xx 3)/(sqrt3 xx 4) = sqrt3/4`
Hence,
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1