Advertisements
Advertisements
प्रश्न
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
उत्तर
LHS = sin 2A
Putting A = 30° in LHS and RHS., we get
LHS = sin 2 x 30° = sin 60° = `sqrt3/2`
RHS = `(2 xx tan 30°)/(1 + tan^2 30°) = (2 xx 1/sqrt3)/( 1 + (1/sqrt3)^2)`
= `(2/sqrt3)/(1 + 1/3). (2/sqrt3)/(4/3)`
= `(2 xx 3)/(sqrt3 xx 4) = sqrt3/4`
Hence,
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`