Advertisements
Advertisements
प्रश्न
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
उत्तर
L.H.S. = tan 10° tan 15° tan 75° tan 80°
= tan 10° tan 15° tan (90° - 15°) tan (90° - 10°)
= = tan 10° tan 15° cot 15° cot 10°
= `1/cot 10° xx 1/cot 15° xx cot 15° xx cot 10°`
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.