Advertisements
Advertisements
प्रश्न
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
उत्तर
LHS = cos 1°cos 2°cos 3° ....cos 180°
= cos 1°cos 2°cos 3° ....cos 89° cos 90° .... cos 180°
= cos 1°cos 2°cos 3° ....cos 89° x 0 x cos 91° .... cos 180°
= 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2