Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
उत्तर
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2`
= `(sinθ/cosθ + 1/cosθ)^2 + (sinθ/cosθ - 1/cosθ)^2`
= `((sinθ + 1)/cosθ)^2 + ((sinθ - 1)/cosθ)^2`
= `(sinθ + 1)^2/(cos^2θ) + (sinθ - 1)^2/cos^2θ`
= `((sinθ + 1)^2 + (sinθ - 1)^2)/cos^2A`
= `(sin^2θ + 1 + 2sinθ + sin^2θ + 1 - 2sinθ)/(1 - sin^2θ)`
= `(2(1 + sin^2θ))/(1 - sin^2θ)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
(1 – cos2 A) is equal to ______.