हिंदी

Prove the Following Trigonometric Identities. `(1 - Tan^2 A)/(Cot^2 a -1) = Tan^2 A` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`

उत्तर

`(1 - sin^2 A/cos^2 A)/(cos^2 A/sin^2 A   -1) = ((cos^2 A - sin^2 A)/cos^2 A)/((cos^2 A - sin^2 A)/sin^2 A`

`= (sin^2 A)/cos^2 A`

`= tan^2 A`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 50 | पृष्ठ ४५

संबंधित प्रश्न

Prove the following trigonometric identity.

`cos^2 A + 1/(1 + cot^2 A) = 1`


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


If tan A =` 5/12` ,  find the value of (sin A+ cos A) sec A.


If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 


The value of sin2 29° + sin2 61° is


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.


Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Prove that sin4A – cos4A = 1 – 2cos2A


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×