Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
उत्तर
`(1 - sin^2 A/cos^2 A)/(cos^2 A/sin^2 A -1) = ((cos^2 A - sin^2 A)/cos^2 A)/((cos^2 A - sin^2 A)/sin^2 A`
`= (sin^2 A)/cos^2 A`
`= tan^2 A`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If tan A =` 5/12` , find the value of (sin A+ cos A) sec A.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
The value of sin2 29° + sin2 61° is
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Prove that sin4A – cos4A = 1 – 2cos2A
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.