Advertisements
Advertisements
प्रश्न
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
उत्तर
L.H.S = `(sintheta + "cosec" theta)/sin theta`
= `sintheta/sintheta + ("cosec"theta)/sintheta`
= 1 + cosec θ × cosec θ ......`[∵ "cosec" theta = 1/sin theta]`
= 1 + cosec2θ
= 1 + 1 + cot2θ .......[∵ 1 + cot2θ = cosec2θ]
= 2 + cot2θ
= R.H.S
∴ `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of tan1° tan 2° ........ tan 89° .
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Choose the correct alternative:
tan (90 – θ) = ?
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.