हिंदी

Prove that sinθ+cosec θsinθ = 2 + cot2θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ

योग

उत्तर

L.H.S = `(sintheta + "cosec"  theta)/sin theta`

= `sintheta/sintheta + ("cosec"theta)/sintheta`

= 1 + cosec θ × cosec θ   ......`[∵ "cosec"  theta = 1/sin theta]`

= 1 + cosec2θ

= 1 + 1 + cot2θ      .......[∵ 1 + cot2θ = cosec2θ]

= 2 + cot2θ

= R.H.S

∴ `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Write the value of tan1° tan 2°   ........ tan 89° .


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `±  sqrt("a"^2 + "b"^2 -"c"^2)`


Choose the correct alternative:

tan (90 – θ) = ?


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec"  theta)` = sec θ


If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×