Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
उत्तर
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
= L.H.S.
= `(sec"A"-1)/(sec"A"+1)`
= `(1/cosA-1)/(1/cosA+1)`
=`(1-cosA)/(1+cosA)`
Multiplied by 1 + cosA
=`(1-cos^2A)/(1+cosA)^2`
=`(sin^2A)/(1+cosA)^2`
=`((sinA)/(1+cosA))^2`
= R.H.S
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`