हिंदी

Prove that cosecsec2θ+cosec2θ=tanθ+cotθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`

योग

उत्तर

L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`

= `sqrt(1/cos^2 theta + 1/(sin^2 theta))`  ...`[∵ sec^2 theta = 1/(cos^2 theta) "and"  "cosec"^2 theta = 1/(sin^2 theta)]`

= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`

= `sqrt(1/(sin^2 theta * cos^2 theta))`  ...[∵ sin2θ + cos2θ = 1]

= `1/(sin theta * cos theta)`

= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)`  ...[∵ 1 = sin2θ + cos2θ]

= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`

= `sintheta/costheta + cos theta/sintheta`  ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`

= tan θ + cot θ 

= R.H.S

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 2 | पृष्ठ ९९

संबंधित प्रश्न

Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove that:

(sec A − tan A)2 (1 + sin A) = (1 − sin A)


If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity :

`cosA/(1 + sinA) = secA - tanA`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Prove that cot2θ × sec2θ = cot2θ + 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×