Advertisements
Advertisements
प्रश्न
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
उत्तर
L.H.S = `sqrt(sec^2 theta + "cosec"^2 theta)`
= `sqrt(1/cos^2 theta + 1/(sin^2 theta))` ...`[∵ sec^2 theta = 1/(cos^2 theta) "and" "cosec"^2 theta = 1/(sin^2 theta)]`
= `sqrt((sin^2 theta + cos^2 theta)/(sin^2 theta * cos^2 theta))`
= `sqrt(1/(sin^2 theta * cos^2 theta))` ...[∵ sin2θ + cos2θ = 1]
= `1/(sin theta * cos theta)`
= `(sin^2 theta + cos^2 theta)/(sin theta * cos theta)` ...[∵ 1 = sin2θ + cos2θ]
= `(sin^2 theta)/(sin theta * cos theta) + (cos^2 theta)/(sin theta * cos theta)`
= `sintheta/costheta + cos theta/sintheta` ...`[∵ tan theta = sin theta/cos theta "and" cot theta = costheta/sin theta]`
= tan θ + cot θ
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`cosA/(1 + sinA) = secA - tanA`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that cot2θ × sec2θ = cot2θ + 1