Advertisements
Advertisements
प्रश्न
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
उत्तर
`(sec theta -1)/( sec theta +1)`
= `((1/cos theta - 1/1))/((1/ costheta + 1/1))`
=`(((1- cos theta)/cos theta))/(((1+ cos theta)/cos theta))`
=`(1- cos theta)/(1+ cos theta)`
=`((1/1-2/3))/((1/1+2/3)`
=`((1/3))/((5/3))`
=`1/5`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
tan θ cosec2 θ – tan θ is equal to
Choose the correct alternative:
cos θ. sec θ = ?
If tan θ × A = sin θ, then A = ?
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.