हिंदी

`Cosec Theta (1+Costheta)(Cosectheta - Cot Theta )=1` - Mathematics

Advertisements
Advertisements

प्रश्न

`cosec theta (1+costheta)(cosectheta - cot theta )=1`

उत्तर

LHS = `cosec theta (1+ cos theta )( cosec theta - cot theta)`

       =` (cosec  theta + cosec  theta xx cos theta)(cosec  theta - cot theta)`

    =` (cosec  theta + 1/(sin theta) xx cos theta ) ( cosec  theta - cot theta )`

    =` ( cosec  theta + cot  theta )( cosec  theta - cot  theta)`

    =` cosec^2 theta - cot^2  theta       (∵ cosec^2 theta - cot^2 theta=1)`

     = 1 

     = RHS 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 4.2

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to 


If x = a tan θ and y = b sec θ then


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×