हिंदी

If `Cos Theta = 5/13` Where `Theta` Is an Acute Angle. Find the Value of `Sin Theta` - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`

उत्तर

`cos theta = 5/13`

`sin^2 theta = 1 - cos^2 theta = 1 - 25/169 = 144/169`

`sin theta = +- 12/13` as `theta` is acute, therefore `sintheta` must be positive

`:. sin theta  = 12/13`

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) Set A

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


(i)` (1-cos^2 theta )cosec^2theta = 1`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`


If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2. 


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×