Advertisements
Advertisements
प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
उत्तर
`cos theta = 5/13`
`sin^2 theta = 1 - cos^2 theta = 1 - 25/169 = 144/169`
`sin theta = +- 12/13` as `theta` is acute, therefore `sintheta` must be positive
`:. sin theta = 12/13`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`