Advertisements
Advertisements
Question
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Solution
`cos theta = 5/13`
`sin^2 theta = 1 - cos^2 theta = 1 - 25/169 = 144/169`
`sin theta = +- 12/13` as `theta` is acute, therefore `sintheta` must be positive
`:. sin theta = 12/13`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
The value of sin2 29° + sin2 61° is
Choose the correct alternative:
cot θ . tan θ = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If 2sin2β − cos2β = 2, then β is ______.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?