Advertisements
Advertisements
Question
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Solution
L.H.S. = cot2 A – cos2 A
= `cos^2"A"/sin^2"A" - cos^2"A"`
= `(cos^2"A" - sin^2"A".cos^2"A")/(sin^2"A")`
= `(cos^2"A"(1 - sin^2"A"))/sin^2"A"`
= cot2 A (cos2 A)
= cos2 A . cot2 A
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
If m = a sec A + b tan A and n = a tan A + b sec A, then prove that : m2 – n2 = a2 – b2
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of cos1° cos 2°........cos180° .
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.