Advertisements
Advertisements
Question
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Solution
L.H.S. = (cosec A + sin A) (cosec A – sin A)
= (cosec2 A – sin2 A) ...[∵ (a + b) (a – b) = a2 – b2]
= 1 + cot2 A – sin2 A
= cot2 A + 1 – sin2 A
= cot2 A + cos2 A ...(∵ 1 – sin2 A = cos2 A)
= R.H.S.
APPEARS IN
RELATED QUESTIONS
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Simplify : 2 sin30 + 3 tan45.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ