Advertisements
Advertisements
Question
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Solution
LHS = cosec2 (90° - θ) + cot2 (90° - θ)
= sec2 θ + tan2θ
= 1 + tan2θ + tan2θ
= 1 + 2 tan2θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If cosθ = `5/13`, then find sinθ.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.