Advertisements
Advertisements
प्रश्न
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
उत्तर
LHS = cosec2 (90° - θ) + cot2 (90° - θ)
= sec2 θ + tan2θ
= 1 + tan2θ + tan2θ
= 1 + 2 tan2θ
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If `secθ = 25/7 ` then find tanθ.
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Given that sin θ = `a/b`, then cos θ is equal to ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to: