हिंदी

Prove the Following Trigonometric Identities. (Sec A + Tan A − 1) (Sec A − Tan A + 1) = 2 Tan A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A

उत्तर

We have to prove (sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A

We know that `sec^2 theta A - tan^2 theta A = 1`

So, we have

(sec A + tan A - 1)(sec A - tan A +  1) = {sec A + (tan A - 1)}{sec A - (tan A - 1)}

`= sec^2 A - (tan A - 1)^2`

`= sec^2 A - (tan^2 A - 2 tan A + 1)`

`= (sec^2 A - tan^2 A) + 2 tan A - 1`

So we have

(sec A + tan A  - 1)(sec A - tan A + 1) = 1 +  tan A - 1

= 2 tan A

Hence proved.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 59 | पृष्ठ ४५

संबंधित प्रश्न

Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`


Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Without using trigonometric table , evaluate : 

`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


If sec θ = `25/7`, then find the value of tan θ.


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×