Advertisements
Advertisements
प्रश्न
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
उत्तर
L.H.S. = `((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + cot^2A - 2cosecAcotA + 1)/(secA(cosecA - cotA))`
= `(cosec^2A + (1 + cot^2A) - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(cosec^2A + cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosec^2A - 2cosecAcotA)/(secA(cosecA - cotA))`
= `(2cosecA(cosecA - cotA))/(secA(cosecA - cotA))`
= `(2cosecA)/secA`
= `(2 1/sinA)/(1/cosA)`
= `2/sinA xx cosA/1`
= `2 cosA/sinA`
= 2 cot A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.