Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
рдЙрддреНрддрд░
ЁЭР┐ЁЭР╗ЁЭСЖ = `(tan theta)/(1+tan^2 theta )^2 +( cot theta )/(1+cot^2 theta)^2`
=`tan theta/ ((sec^2 theta)^2) + cot theta/((cosec^2 theta) ^2)`
=`tan theta / sec^4 theta + cottheta/(cosec^4 theta)`
=`sin theta/cos theta xx cos^4 theta + cos theta/sin theta xx sin ^4 theta`
=` sin theta cos ^3 theta + cos theta sin ^3 theta`
=`sin theta cos theta ( cos^2 theta + sin ^2 theta)`
=`sin theta cos theta`
= RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If tan θ = `13/12`, then cot θ = ?
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.