рдорд░рд╛рдареА

`Tan Theta/(1+ Tan^2 Theta)^2 + Cottheta/(1+ Cot^2 Theta)^2 = Sin Theta Cos Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`

рдЙрддреНрддрд░

ЁЭР┐ЁЭР╗ЁЭСЖ = `(tan theta)/(1+tan^2 theta )^2 +( cot theta )/(1+cot^2 theta)^2`

        =`tan theta/ ((sec^2  theta)^2) + cot theta/((cosec^2  theta) ^2)`

        =`tan theta / sec^4 theta + cottheta/(cosec^4  theta)`

        =`sin theta/cos theta xx cos^4 theta + cos theta/sin theta xx sin ^4 theta`

      =` sin  theta  cos  ^3 theta + cos theta sin  ^3 theta`

     =`sin theta cos theta ( cos^2 theta + sin ^2 theta)`

    =`sin theta cos theta`

    = RHS

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 1

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta` 


If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×