Advertisements
Advertisements
प्रश्न
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
उत्तर
`tan ((B + C)/2) = cot "A/2`
We know that for a triangle ΔABC
`<A + <B + <C = 180^circ`
`<B + <C = 180^circ - <A`
`(<B + <C)/2 = 90^circ - (<A)/2`
`tan ((B + C)/2) = tan(90^circ - A/2)`
= `cot(A/2)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
If x = a tan θ and y = b sec θ then
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0