Advertisements
Advertisements
प्रश्न
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
उत्तर
LHS = `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ)^3 + (cos^2θ)^3] - 3(sin^4θ + cos^4θ) + 1`
= `2[(sin^2θ + cos^2θ){(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ}] - 3(sin^4θ + cos^4θ) + 1`
= `2{(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ} - 3(sin^4θ + cos^4θ) + 1`
= `2sin^4θ + 2cos^4θ - 2sin^2θcos^2θ - 3sin^4θ - 3cos^4θ + 1`
= `-sin^4θ - cos^4θ - 2sin^2θcos^2θ + 1`
= `-(sin^4θ + cos^4θ + 2sin^2θcos^2θ) + 1`
= `-(sin^2θ + cos^2θ)^2 + 1 = -1 + 1 = 0`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
If 2sin2θ – cos2θ = 2, then find the value of θ.