मराठी

Prove the Following Identity : 2 ( Sin 6 θ + Cos 6 θ ) − 3 ( Sin 4 θ + Cos 4 θ ) + 1 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`

बेरीज

उत्तर

LHS = `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`

= `2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1`

= `2[(sin^2θ)^3 + (cos^2θ)^3] - 3(sin^4θ + cos^4θ) + 1`

= `2[(sin^2θ + cos^2θ){(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ}] - 3(sin^4θ + cos^4θ) + 1`

= `2{(sin^2θ)^2 + (cos^2θ)^2 - sin^2θcos^2θ} - 3(sin^4θ + cos^4θ) + 1`

= `2sin^4θ + 2cos^4θ - 2sin^2θcos^2θ - 3sin^4θ - 3cos^4θ + 1`

= `-sin^4θ - cos^4θ - 2sin^2θcos^2θ + 1`

= `-(sin^4θ + cos^4θ + 2sin^2θcos^2θ) + 1`

= `-(sin^2θ + cos^2θ)^2 + 1 = -1 + 1 = 0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Trigonometric Identities - Exercise 21.1

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 21 Trigonometric Identities
Exercise 21.1 | Q 6.06
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×