Advertisements
Advertisements
प्रश्न
Show that : tan 10° tan 15° tan 75° tan 80° = 1
उत्तर
L.H.S. = tan 10° tan 15° tan 75° tan 80°
= tan(90° – 80°) tan(90° – 75°) tan 75° tan 80°
= cot 80° cot 75° tan 75° tan 80° ...[∵ tan(90° – θ] = cot θ]]
= tan 80° cot 80° × tan 75° cot 75°
= 1 × 1
= 1 = R.H.S. ...(∵ tan A cot A = 1)
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that sec2θ − cos2θ = tan2θ + sin2θ
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.