Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
उत्तर
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))`
= `sqrt((1 + sinq)/(1 - sinq) . (1+ sinq)/(1 + sinq)) + sqrt((1 - sinq)/(1 + sinq) . (1 - sinq)/(1 - sinq))`
= `sqrt((1 + sinq)^2/(1 - sin^2q)` + `sqrt((1 - sinq)^2/(1 - sin^2q))` = `sqrt((1 + sinq)^2/cos^2q)` + `sqrt((1 - sinq)^2/cos^2q)`
= `(1 + sinq)/cosq + (1 - sinq)/cosq = (1 + sinq + 1 - sinq)/cosq` = `2/cosq`
= 2 secq
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.