Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
उत्तर
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Consider `sec70^circ sin20^circ - cos20^circ cosec70^circ`
⇒ `sec(90^circ - 20^circ)sin20^circ - cos20^circ . cosec(90^circ - 20^circ)`
⇒ `cosec20^circ sin20^circ - cos20^circ sec20^circ`
⇒ `1/sin20^circ . sin20^circ - cos20^circ . 1/cos20^circ`
⇒ 1 - 1 = 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
If 3 sin θ = 4 cos θ, then sec θ = ?