Advertisements
Advertisements
प्रश्न
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
उत्तर
It is given that,
\[\cos9\theta = \sin\theta, 9\theta < 90°\]
\[ \Rightarrow \sin\left( 90°- 9\theta \right) = \sin\theta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[ \Rightarrow 90° - 9\theta = \theta\]
\[ \Rightarrow 10\theta = 90°\]
\[ \Rightarrow \theta = 9°\]
\[\text{ Therefore }, \tan6\theta = \tan54°.\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
sec4 A − sec2 A is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1