मराठी

If Cos 9 θ = Sin θ and 9 θ < 900 , Then the Value of Tan 6 θ is - Mathematics

Advertisements
Advertisements

प्रश्न

If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is

बेरीज

उत्तर

It is given that,

\[\cos9\theta = \sin\theta, 9\theta < 90°\]
\[ \Rightarrow \sin\left( 90°- 9\theta \right) = \sin\theta \left[ \sin\left( 90° - \theta \right) = \cos\theta \right]\]
\[ \Rightarrow 90° - 9\theta = \theta\]
\[ \Rightarrow 10\theta = 90°\]
\[ \Rightarrow \theta = 9°\]
\[\text{ Therefore }, \tan6\theta = \tan54°.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 32 | पृष्ठ ५९

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`sin^2 A + 1/(1 + tan^2 A) = 1`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove the following identities:

`1 - cos^2A/(1 + sinA) = sinA`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


sec4 A − sec2 A is equal to


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×